Data Aggregation Sets in Adaptive Data Model

نویسندگان

  • Petras Gailutis Adomenas
  • Algirdas Ciucelis
چکیده

This article presents the ways of identification, selection and transformation of the data into other structures. Relation selection and transformation may change data quantity and order of laying out. As a result the data are aggregated to the structure needed for application problem algorithm. Data aggregation makes possible to adapt data structure presentation order and quantity for any application problem. Naturally, there must be enough necessary data in the relation sets for any application problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of Heronian means in a similarity classifier

This paper introduces new similarity classifiers using the Heronian mean, and the generalized Heronian mean operators. We examine the use of these operators at the aggregation step within the similarity classifier. The similarity classifier was earlier studied with other operators, in particular with an arithmetic mean, generalized mean, OWA operators, and many more. The two classifiers here ar...

متن کامل

Adaptive Neuro-fuzzy Inference System Prediction of Zn Metal Ions Adsorption by γ-Fe2o3/Polyrhodanine Nanocomposite in a Fixed Bed Column

This study investigates the potential of an intelligence model namely, Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of the Zn metal ions adsorption in comparision with two well known empirical models included Thomas and Yoon methods. For this purpose, an organic-inorganic core/shell structure, γ-Fe2O3/polyrhodanine nanocomposite with γ-Fe2O3 nanoparticle as core with average diam...

متن کامل

Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making

The aim of this manuscript is to present a new concept of hesitant q-rung orthopair fuzzy sets (Hq-ROFSs) by combining the concept of the q-ROFSs as well as Hesitant fuzzy sets. The proposed concept is the generalization of the fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets as well as intuitionistic hesitant fuzzy sets (IHFSs) and hesitant Pythagorean fuz...

متن کامل

Prediction of rock strength parameters for an Iranian oil field using neuro-fuzzy method

Uniaxial compressive strength (UCS) and internal friction coefficient (µ) are the most important strength parameters of rock. They could be determined either by laboratory tests or from empirical correlations. The laboratory analysis sometimes is not possible for many reasons. On the other hand, Due to changes in rock compositions and properties, none of the correlations could be applied as an ...

متن کامل

A Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)

Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2002